

Seoul Beijing

EURARE Kvanefjeld Refinery Demo Plant

Tokvo

Work Package 5

London

New York

Strategic Metals For Global Industry www.ggg.gl

About Outotec Research Laboratories

Highly Skilled and Experienced in Atmospheric Leaching

- Located in Pori, Finland
- Part of Outotec Global Metallurgy
- Highly skilled and experienced in atmospheric leaching
- Developed the HydroCu process
- Hydrometallurgical expertise
- State of the art facilities

Outotec Research Laboratories

Entrance to Outotec Research Laboratories

About the Refinery Pilot Plant

250 kilograms of concentrated treated

- 1st Kvanefjeld Refinery Pilot Plant Performed
 - Previously completed 100 hour continuous leaches
- Concentrate from 26 tonne flotation pilot plant in May 2015
- Fully integrated two stage leach
- Part of the EURARE Program
 - The EURARE program aims to encourage the sustainable supply of EU rare earth raw materials.

Pilot Plant Flowsheet

Process Piloted in Four Phases

Pilot Plant Flowsheet Phase 1

Counter Current Atmospheric Leach with Two Products

Two Stage Counter Current Leach Circuit

Concentrate Storage

Process Piloted in Three Phases

Weak Acid Leach Tank 1

Outoted

Large Tank Used to assess scale and seeding

Weak Acid Leach Circuit

Continuously Stirred Tank Reactors

Weak Acid Leach Thickener

Clear Overflows Produced suitable for downstream

Strong Acid Leach Circuit

Outoted

Ensures High Extractions of Rare Earths and Uranium

Strong Acid Leach Filtration

Good Filtration Observed for SAL Leach Discharge

Strong Acid Leach Filter Cake

Rare Earths in Filter Cake Ready for Next Phase ... Metathesis

WAL Thickener Over Flow

Low Grade Uranium Solution Ready for Solvent Extraction

Pilot Plant Facilities

Great Facilities and long 250 hours of operation

- Computer Controlled
- Operated from Monday 31st August till Friday 11th of September

Overall Performance

Kvanefjeld Flotation Now Well Tested

- High availability with only 4 hours of downtime
- Rare earth leach extraction of ~95%
 - Exceeding Feasibility Design of 77%
- Uranium leach extractions of ~85%
- Good circuit operability
- Silica control effective with no gelling
- Filtration and Thickening working well

Pilot Plant Flowsheet

Phase 2 Testwork

Pilot Plant Flowsheet Phase 2

Metathesis – Rare Earth Double Sulphate Conversion

Feed Storage

Re-pulped SAL Leach Residue

Metathesis Cascade

Outoted

Converting REE Double Salt to REE Hydroxide

Product Thickening

Dynamic Settling Tests for Thickener Sizing

Metathesis Residues Filtration

Filtration and Washing Data Generated.

Overall Performance

Outoted

Metathesis Demonstrated Continuously

- High availability, no downtime
- Extensive double salt conversion achieved
- No requirement to heat circuit confirmed
- Good circuit operability
- Thickening and filtration working well

Pilot Plant Flowsheet

Phase 3

Pilot Plant Flowsheet Phase 3

Outotec

HCl Releach and Impurity Removal

Feed Storage

Re-pulped Metathesis Residue

HCl Releach

Rare Earths Dissolved with HCl

Impurity Removal

Fe / Al / Th Precipitated from Solution

Radionuclide Removal

Pb / Po / Ra Precipitated from Solution

Solid/Liquid Separation

Dynamic Thickener Testwork

Final Residues

Barren Residues for Disposal

- High availability, no downtime
- Rare earth recovery from converted double salt >95%
- Low iron and aluminium dissolution in HCl releach
- High rejection of impurities.
- No requirement to heat circuit confirmed
- Good circuit operability
- Thickening achieved good underflow density and overflow clarity

Pilot Plant Flowsheet

Phase 4

Pilot Plant Flowsheet Phase 4

Outoted

Carbonate Precipitation

Carbonate Precipitation

REE Precipitated as Carbonates

Filtered Product

REE Carbonate Filter Cake

Washed Final Product

Approximately 50% TREO

Overall Performance

Phase 4

- High availability, no downtime
- High rare earth recovery from solution
- Good selectivity against impurities (Ca)
- No requirement to heat circuit confirmed
- Simple circuit operability based on pH

About the EURARE Program

GMEL is one of the participating Mining Companies

Introduction: Greenland Minerals and Energy

1

World-class, large scale development project

- Economically robust, proven technology, large-scale, long life production of rare earths and uranium
- Large JORC resource base to produce ~8kt CREO, ~15kt LREO & 1Mlbs U₃O₈ per annum over 37 year mine life
- Ideally located near international airport, existing towns and potential hydro-electric power source

2

Very attractive commodity portfolio

- Heavy rare earths and uranium are both recognised as strategically important commodities for the future
- Rare earths market characterised by limited capacity and increasing demand (particularly Dy, Nd, Tb, Eu and Pr)

GREENLAND

MINERALS AND ENERGY LTD

3

Strong management and technical team

- Experienced management team with proven track record
- Well-respected and knowledgeable technical/project team in place with exceptional local expertise

Highly advantageous ore-type, makes for simple cost-effective processing, highly scalable production

- Low mass -high grade mineral concentrate produced through beneficiation
- Easy atmospheric leaching of the mineral concentrate

5

Globally significant, long life, low cost, multi-commodity asset

- Company to become one of the largest producers of rare earths globally and major U₃O₈
- Company has low cost of production due to multiple by-product opportunities

6

Low political risk

- Stable, low-risk operating environment with government looking to develop new industries and employment
- GME fully permitted to evaluate the project, exploration licence now includes radioactive elements
- Management and board have a solid working relationship with the government and are socially aware